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The problem of the orbital stability of periodic motions of a Hamiltonian system with two degrees of freedom is considered.
The Hamilton function does not depend explicitly on the time and is analytic in the neighbourhood of the trajectory of the
unperturbed motion. The critical case, when all the multipliers are real and have moduli equal to unity, is investigated. The stability
and instability conditions are obtained using Lyapunov’s second method and the KAM theory. Constructive algorithms for checking
these conditions are given. The case of a system containing a small parameter is considered in particular. On the technical side,
the investigation rests primarily on the classical theory of perturbations of Hamiltonian systems and its modern modifications.
The problem of the stability of the permanent rotation of a heavy circular disc which is in collision with a fixed horizontal plane
and the problem of the stability of the plane rotations of a rigid body about a fixed point are considered as applications. © 2001
Elsevier Science Ltd. All rights reserved.

1. THE HAMILTON FUNCTION AND ITS NORMAL FORM

Suppose an autonomous Hamiltonian system with two degrees of freedoms has a periodic motion and
in a neighbourhood of a closed trajectory of phase space corresponding to this motion the Hamilton
function is analytic. We will assume, without loss of generality, that the period is equal to 2.

The canonically conjugate variables &;, n; (&; are the coordinates and r; are the momenta, i = 1, 2)
can be chosen [1] such that the solution corresponding to the periodic motion considered can be written
in the form

E)=1+§,(0), 0=, =m,=0 1y

Here the Hamiltonian I will be 2w-periodic in €. It can be expanded in a converging series in powers
of my, &3, My

I"=l"2+l"3+l‘4+...+]‘k+... (1.2)

where T is the form of the power of k relative to |n; |2, &2, n,. We will write the forms of the second,
third and fourth power, required later, in the form

D= +0,E2.M0.8), T3 =6, M2 €M +93(8,.12.8)
Ty = xE M + W2 (€22, E)0M +94(E2.M2.81)

where x(£,) is a 2m-periodic function of &; and ¢, V,,, are forms of power m in £,, n, with coefficients
that are 2w-periodic in §;.

The orbital stability of the unperturbed motion (1.1) denotes stability of the system with Hamiltonian
(1.2) with respect to perturbations of the quantities n;, £z, M.

Two of the multipliers of the system of equations of the unperturbed motion, linearized in the neigh-
bourhood of periodic motion (1.1), are equal to unity, and the other two are the roots of the equation

(1.3)

p2—-2Ap+1=0 1.4)
where 24 = x1,(27) + x2,(2w) and x;(2w) are the elements of the matrix X(£,), calculated for §; = 2,
of the fundamental solutions (X(0)) = E, where E is the second-order identity matrix) of the linear
system with coefficients that are 2w-periodic with respect to the independent variable §;
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&y 99, dny . _9¢; (1.5)

Here ¢, is the part of the function I'; from (1.3) that is quadratic in &;, 1,.
We will investigate the critical case when |4| = 1, i.e. when Eq. (1.4) has real roots (when 4 = -1) or
roots p; = p, = 1 (when A4 =1). Confining ourselves to the case of the general situation, we will assume
that the matrix X (27) does not reduce to diagonal form. In this case, the unperturbed periodic motion
is orbitally unstable in the linear approximation.

To investigate the non-linear problem of the orbital stability of periodic motion (1.1) it is best to obtain
the normal form of the Hamilton function (1.2) using a canonical replacement of variables. To do this
we will first use a real linear univalent canonical replacement of variables, periodic in &,

&y = €y + 112§ vy, My =1y (€ duy + 1y (€)1, (1.6)

to reduce the quadratic Hamiltonian ¢, of Egs (1.5) to its normal form 1/2 3v3, where 8 = 1 or -1, its
specific value being determined when constructing replacement (1.6).

If A = 1, we can obtain a matric N of the replacement of variables (1.6) that is 2m-periodic in &;. It
has the form [2]

N = X(£,)PQ(,) (1.7
where
e |
Q—“ o 1 ‘“ (1.8)

and the number 3 and the matrix P are defined by the following formulae: if x;,(2w) # 0, we have
0
P= nz e " & = sign x,,(27) (1.9)

a=|x, 2R IEM 1, b=8(xp(2m)~1)| 210, (27) [

and if x,;(2m) # 0, we have
-l
P =“ d CO “, & = -sign x4, (27)

¢ =1x9,2m)IQT)V2, d =5(x;, 1)~ 1) 2:xy (27) |/ (1.10)

When A4 = —1 replacement (1.6) will be 4w-periodic in £,. It can be obtained in the form of the product
of three matrices (1.7), where Q is given by formula (1.8) and P is defined by Eqs (1.9) or (1.10), in
which a and ¢ remain as before, while

b = —8(xp(21)+ 1) | 215, @E) ™2, d = —8(x;,(2R)+ 1) | 2mxy (27) [ /2

where 8 = —sign x15(2m) if x15(27) # 0 and 8 = sign x,,(27) if x,(27) # 0.
If S(v,, &, &) is the generating function of transformation (1.6), then, by the theory of canonical
transformations [3], we have the identity

E‘S..g. —lsuz
3E, (p2_2 2 (1.11)

On the left-hand side of this identity the quantities £,, vy, are expressed in terms of u, and v, by formulae
(1.6).

To obtain the transformation &, &, n;, Mz — Uy, Uy, V1, Oy, canonical with respect to all the variables
and which reduces the function I'; from (1.2) to normal form, we take a generating function of the form
v1€; + S. Then u; = &, and
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as
n =v, +E=U| + ko + ky by + kopts3 1.12)
]
where k; are periodic functions of &;, found from identity (1.11).
The I-iamilton function (1.2) can be written as follows in the new variables u;, v;
F=FR+FR+F..+F+.. (1.13)
F=v,+ %807, F = fi(u.00.0)0 + fi(up.03,4) (1.14)

Fy =3y )U|2 + folugvp, 60 + fi(uyv9,4)

Here f; is a form of the power k in u,, vy

fi= X kfvu(ul Jujy

Vs

The coefficients f,, have period 7 in u;. The value of 7 is equal to 27 when 4 = 1 in Eq. (1.4) and
7 = 4w whenA4 = —1. Expressions for f,,, in terms of the coefficients of Hamiltonian (1.2) follow from
the identities Yyym; + @3 = F3, X2 + Py + @4 = F,, on the left-hand sides of which &,, 1, and 7, are
replaced, in accordance with formulae (1.6) and (1.12), while §; = u;.

To normalize terms of the third and higher powers in Hamilton function (1.3) we will use the Depri—
Hori method [4,5]. We will confine ourselves to considering terms up to the fourth power inclusive. In
a sufficiently small neighbourhood of the unperturbed periodic motion, the normalizing canonical
transformation uy, V1, Uz, V2, = W1, ', G2, P2, €an be obtained close to the identity transformation

u =w b PPN vy=nh +...,u2 =42 +...,Uz =P +...

where the dots converging series in powers of r;, g, and p, with coefficients r-periodic in wy. The
normalized Hamiltonian (1.13) takes the form

H =1+ Y38p3 + h3oq3 + hio@a i + haods + haogani + heorit + Os (1.15)

where h;; are constant quantities while Os is a series which begins with terms no less than the fifth power

in |r1|12, g3, p3, and the coefficients of the series T are T-periodic in the variable w;. Orbital stability of

the unperturbed periodic motion (1.1) is equivalent to stability of a system with normalized Hamiltonian
(1.15) with respect to perturbations of the quantities r;, g, and p,.

"~ Omitting the fairly lengthy calculations, we will write the final formulae required to calculate coef-

ficients h; of the normal form. We have

h3o = {f30), h1o = (fi0) (1.16)
hao ={fio = Fofio + %o = Farso)) + 168G Fo X fia) — (£r)) - (L17)
han = (oo = 7 + %5 o1 — Fora0) + 6 oW = Fario ) +

+%8({ fioX fiz) - A a X)) (1.18)
hoo = (1 + 5 FroWor = Form10)) - %68(for)* (1.19)

Here we have used the notation u, for the coefficients f,, of forms (1.14), t-periodic in u;, where
fon = ( fw> + f,u, is the mean value of the function ( fw) over the period. Similar notation is also used
for the coefficients w,,, of the expansion in series of the generating function of the Lie transformation
in the Depri~Hori method. The functions w,, occurring in (1.17)—(1.19) satisfy the following system
of differential equations

= 1;30» Tz = le —355’30
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dﬁﬂo - dﬁ’()' r ~
= fio» = fo —OW
du, fio du, ol 10
The initial values of the functions #,,, can obviously be chosen so that the mean values (Ww) are equal
to zero.

2. THE INSTABILITY OF THE PERIODIC MOTION

In this section we will prove the following assertion.

Theorem 1. If the coefficient A3 of normal form (1.15) is non-zero or z3y = 0 but 8h49 < 0, the periodic
motion is orbitally unstable.

In order to prove the correctness of the theorem, it is sufficient to demonstrate the instability for
values of the perturbations 7y, ¢, and p,, belonging to the energy level H = 0, on which the perturbed
motion (1.1) lies. On this energy level the motion of the system is described by Whittaker’s equations,
which have the form of the Hamilton equations [3]. The function K(g,, p;, w;), where r; = —K is the
root of the equation H = 0, plays the role of the Hamilton function, while the quantity wy plays the
role of the independent variable. In a sufficiently small neighbourhood of the unperturbed motion (1.1)
the quantity w; increases monotonically and can play the role of time in the stability problem.

Suppose hyg is non-zero in (1.15). Solving the equation H = 0 for r;, we obtain

K = Y48} + h3oq3 — Y38hy0a,P3 + O, (2.1)

where O, is the set of terms higher than the third power in g, and p,.

We will use Lyapunov’s theorem on instability [6]. We will first simplify Hamiltonian (2.1) by making
two canonical replacements of variables in succession. The first replacement gy, p» —» g5, p5 is univalent
and is specified by the generating function

S, = q,p5 + Yahiod3 P
while the second has valency 8h%; and has the form

g, =8h30Qy, P = hi Py

After these replacements the motion on the energy level H = 0 is described by the transformed
Hamiltonian (2.1), which has the form

K=Y%P +0;+0, 22
We take the following function as the Lyapunov function
V=(0, - R
By virtue of the equations of motion with Hamiltonian (2.2) its derivative will be

-41=Q§+P22+03
dw,

Since the derivative is positive-definite, while the function V itself is sign-variable, then, by Lyapunov’s
theorem, there is instability

Suppose now 3y = 0 and 34, < 0. We will show that there is instability, as above, by using Lyapunov’s
theorem. The motion on the energy level H = 0 is described by equations to which the following
Hamiltonian corresponds

K = Y58p2 — Y5 8hi0a, 03 + hyods - YiOhyod3 p5 + VihaoPs +Os (2.3)

After the canonical univalent replacement of variables q,, p, — g5, p5, defined by the generating
function
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Sy = o + Ya hyo@? Py + 11 24(3h%) + 4y )3 p5 — Vi Shooda Py

and a subsequent canonical replacement (with valency 8|h4|)

a5 =81ho % 0y, p} =lho % B,
Hamiltonian (2.3) takes the form
K =P -0} +0s (24)
Suppose V' = Q,P,. Then, by virtue of equations corresponding to (2.4), we obtain

v _ 403 + P} +0;
dw)

Since Vis sign-variable, while dV/dw is positive-definite function, then, by Lyapunov’ theorem, there

is instability.
Theorem 1 is proved.

3. THE CONDITION FOR ORBITAL STABILITY
OF PERIODIC MOTION

The following theorem, which gives the sufficient condition for the orbital stability of unperturbed
motion, holds.

Theorem 2. If the coefficient k39 in normal form (1.15) is equal to zero, but then 8k4 > 0, periodic
motion (1.1) is orbitally stable.

We will prove this theorem by the methods of the KAM theory [7). We will carty out the proof in
several stages.

3.1. The introduction of a small parameter. Using the smallness of the quantities ry, g, and p,, we will

introduce a small parameter €(0 < € < 1) and we will slightly transform Hamiltonian (1.15) using the
following canonical replacement of variables (with valency £ 23 || )

w=Uy, r=e8lhgl" R, _ (3.1)
- . -
9 =5%5|h4o| A 0y, P2=Elhyl % P,
In the new variables the perturbed motion has a Hamilton function of the form

H =R, +€®(Q,, P, R))+€®,(Q,. Py Ry tty €7%) (3.2)
where
D =Y P +0;F +aQ,R, (00=8hyg | hyy %) (3.3)
while the function ®; is analytic with respect to all its arguments and i T-periodic in u,.

3.2. The approximate system. If we drop the term €®, in (3.2), we obtain an approximate system having
the Hamiltonian

H =R, +£®(Q,, P, R)) (3.4)

In the approximate system the quantity R is constant and the change of the variables Q, and P, with
time is described by canonical equations with Hamilton function

Y = d(0,, P, R)) (3.5)
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where R, is a constant parameter. These equations have the integral
(@5, P, R,)=h=const (3.6)

For actual motion 4 = h® ~(27/256)'*(aR;)**. When h = h° we have stable equilibrium for which
Py =0and Q, = +(1/4 |aR1])'3, where the upper 51%n corresponds to the case aR; = 0 and the lower
sign corresponds tb the case aR; < 0. When 2 > k" oscillations occur in the neighbourhood of this
equilibrium position.

Phase portraits of the system with Hamiltonian (3.5) are shown in Fig. 1, Figures 1(a), (b) and (c)
correspond to the cases aR; > 0, aR; = 0 and aR; < 0, respectively.

The point Q, = P, = 0 lies inside the region enveloped by phase curve (3.6) if # > 0 on this curve.
The origin of coordinates Q, = P, = 0 itself corresponds to the case & = 0 in Fig. 1(b). In Fig. 1(a)
and (c) the phase curves corresponding to the case & = 0 are represented by dashes. On these curves

10, I<|oR 15, B, <(27/32)% | o, |5 G7)

3.3. Action-angle variables in the approximate system. In order to use the results of the KAM theory
to prove Theorem 2, it is now convenient to introduce the variables I; and w; (i = 1, 2) into the system
with Hamiltonian (3.2). These variables are action-angle variables [8] in the approximate system with
Hamilton function (3.4). Hamilton function (3.2) can be written in the following form in the I;, w; variables

H = HOU,) +e2HOU,, 1)+ eHP U, Ly, wy, wy;%8) (3.8)

where H® is a 2m-periodic function in the angle variables w, and Wy,
If « = 0 (in this case there are no terms of the third power in |r|"2, g4, p; in (1.15)), we can
obtain the replacement of variables Uy, Ry, @,, P, — wy, [, wy, 5, in explicit form

U=w,R =1

Q, =-VAcnw, k), P,=2V%sn@,k)dnw k) (3.9)
v =2Kw,/n, V=3nl,/(4K)
Here sn, cn and dn are the elliptic Jacobi functions, X is the complete elhptllc integral of the first kind

and the modulus k of the elliptic functions and of the mtegral is equal to 2772,
Replacement (3.9) is canonical, univalent and 2w-periodic in w,. We obtain that in Hamiltonian (3.8)

HO® = I, HY = & KIQK_l )% (3.10)

while the function H® when I, > 0 is analytic with respect to all its arguments,

Suppose now that a # 0. We will limit ourselves solely to obtaining action variables I; and I, Since,
in the approximate system U, is a cyclical coordinate, we have I} = R;. If I} = 0, the variable I is
introduced, as in the case when a = 0, by the formulae from (3.9). Suppose 7; # 0 and, to fix our ideas
oy > 0 (the case when of; < 0 can be considered in a similar way). We then have

i
1l =‘2"1't'§P2sz (3.11)

P,

WeSE:

(a) (b) ©
Fig. 1
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where the integral is evaluated along the closed phase trajectory in Fig, 1a, specified by Eqs (3.3) and
(3.6), inwhich Ry = I,.
If we make the replacement Q, = ()", in (3.11), we obtain

L= ‘E:" f VFGrax (3.12)
x|
fez-x-x% z=(d)) Bh (2= —(27/256)%) (3.13)

The quantities x;, x,(x; < 2% < X,) are the real roots of the equation f = 0. The other two roots
of this equation are complex-conjugate umbers.

The derivative with respect to z of the right-hand side of (3.12) is non-zero. Hence, it can be solved
for z. We obtain that z will be a certain function of the ratio I,/I;. We then obtain from (3.13) that s =
(ody)¢ (IyI}). Consequently, in the Hamilton function (3.8) we have

H® =1, HD = (o, )%<P(12 /1) (3.14)
while the function H® is analytic with respect to its arguments when I; # 0, I, > 0.

3.4. The change in the variables I; (i = 1, 2) in the complete system and the orbital stability of the
unperturbed periodic motion. In the approximate system, described by Hamiltonian (3.4) the action
variables are constant, I;(f) = [;(0) (i = 1, 2). In the complete system, with Hamiltonian (3.2), the
quantities J;, generally speaking, will not be constant. But if the Hamiltonian of the complete system,
written in the variables I, w; in the form (3.8), satisfies the conditions

© m 250
oH %0, oH 20, J°H

3.15
o/, ol, o/; 0 (315)

then, by the KAM theory [7}, for sufficiently small € (i.e., by virtue of (3.1), in a sufficiently small
neighbourhood of the trajectory of the unperturbed motion) for all initial conditions the variables I{r)
for all ¢ > 0 will differ only slightly from their initial values

| 1.(t) = 1,0) |< ce*2 (c - const), i=1,2 (3.16)

Consider the case when of; = 0. It immediately follows from expressions (3.10) for H©® and HO
that when I > 0 conditions (3.15) are satisfied. Hence, for all ¢ > 0 inequalities (3.16) hold. Hence, by
virtue of the replacements (3.1) and (3.9) it follows that the periodic motion (1.1) is orbitally stable.

Suppose now that aly # 0. The first of conditions (3.15) is obviously satisfied, according to (3.14).
For the derivatives of the function H with respect to I, using [9] we obtain the following expression
from (3.14) and (3.12)

aHY _(alYSmyZpg FHY _ (@Y Hr g 3 J;Z]
ol,  2K(k) oI 2K(k)  9z\ K(k)

p=1(x + 5 + 2215, g=l(x +x) + 252 1*
The modulus k of the complete elliptic integral of the first kind K(k) is found from the equation
4pqk? = (x — x2)* - (p - 4)?

Note that the quantity dHD/31, is equal to the oscillation frequency corresponding to the closed
trajectory in Fig. 1(a), divided by €2 This quantity is positive and, consequently, the second of conditions
(3.15) is satisfied for all z > ~(27/256)'?, i.e. for all closed trajectories in Fig. 1(a).

A check on the third of conditions (3.15) is more complicated. However, for the problem of the stability
of periodic motion (1.1) it is sufficient to verify that this condition is satisfied at least for small positive
values of z, to which the phase trajectories (3.6) surrounding the origin of coordinates O, = P, = 0
correspond.



804 A. P. Markeyev

Calculations show that for small z the following estimate holds

2 V3[(/3 + DK - 243E)
3K3

a2H(I)
oI}

=(y+0@)ah) B, y= (3.17)

where the modulus of the complete elliptic integrals K ad E is specified by the equality 4k = 2 - V3.
Since y = -1.372, it follows from (3.17) that the third of inequalities (3.15) holds for sufficiently small
z. Hence, for the set of all initial conditions which correspond to the trajectories surrounding the point
Q, = P, = 0, lying close to the dashed trajectories (3.6) shown in Fig. 1(a), when & = 0, the variables
I(®) (i = 1, 2) for all ¢t > 0 satisfy inequalities (3.16), provided ¢ is sufficiently small. Hence, taking
inequalities (3.7) and the replacement (3.1) into account, it follows that Theorem 2 also holds in the
case when od; # 0.

4. THE STABILITY OF THE PERIODIC MOTION OF A DISC WHEN IT
IS IN COLLISION WITH A HORIZONTAL PLANE

Suppose a thin uniform circular disc of radius R moves above a fixed absolutely smooth horizontal plane
in a uniform gravitational field. From time to time the disc collides with the plane. The collisions are
assumed to be absolutely elastic.

A motion of the disc exists when it rotates with constant angular velocity  around its diameter, which
occupies a vertical position, and then, as a result of the collisions, the disc periodically jumps a height
h above the plane.

The orbital stability of this periodic motion of the disc (i.e. the stability with respect to perturbations
of the angle of deviation of the plane of the disc from the vertical, the derivative of this angle with respect
to time and the height the disc jumps above the plane) were investigated in [10]. It turned out that in
the plane of the dimensionless parameters a = wV2h/g, b = 4g/(v’R) there is a denumerable set of
regions of stability and instability. In Fig. 2 we show part of the a, b plane containing the first two regions
of instability, shown hatched in the figure. The values of the parameters a and b which lie on the curves
separating the stability and instability regions were not considered in [10]. In Fig. 2 the first four such
curves are denoted by v, (k = 1, 2, 3, 4). The boundaries vy, and v, are the vertical straight lines
a = w/2 and a = w respectively, while the boundaries y; and v, are specified by the equations
ab =tgaandab = —tga.

Using the results of previous sections we investigated the stability of the periodic motion of a disc
on the above-mentioned boundary curves. We were able to obtain the normalizing replacement (1.6)
and the normal form (1.15) due to the fact that the fundamental matrix of the linearized equations of
the perturbed motion can be written in explicit form [10]. Calculations showed that the quantity A, which
occurs in Eq. (1.4), is equal to 1 on the boundaries v; and y4 and -1 on the boundaries vy, and y3. The
quantity & in expression (1.15) is equal to 1 on the boundaries vy; and vy; and -1 on the boundaries
v, and v,. The coefficients A3y and h,  are identically equal to zero. An investigation of the sign of the
coefficient A4, showed that it is positive along the whole curve y;; on vy, we have iy < 0 when

Y2
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0 < b < 4/m and hyp > O when b > 4/w; on y; when /2, < a < 2.543 ... the coefficient a4 is negative,
and when 2.543 ... < a < 7 it is positive; on -y, we have hyy < 0 when 0 < b < 2/7 and hyy > 0 when
b > 2/w. On the basis of Theorems 1 and 2 we can therefore conclude that there is orbital stability and
instability on the curves v, (k = 1, 2, 3, 4). In Fig. 2 the stability and instability parts on these curves
are represented by the continuous and dashed curves respectively.

5. THE CASE OF PARAMETRIC RESONANCE IN A SYSTEM
CONTAINING A SMALL PARAMETER

Suppose Hamiltonian (1.2) depends on the parameter € (0 < € < 1), analytic with respect to it and,
when € = 0 is independent of the variable £;. We will write the functions @,,, {,,, x from (1.3) in the
form of series

m= i e 0% &a My ) W = i ey P En.8) x= i e x ™)

51)
k=0 =0 k=0
oW =3 <P(k)(§| SN, WP = U‘)(E.u b 341
vil=m v+u-.m

Here (p(k) (,f‘,l, ® are constant quantities if k = 0, and 2r-periodic functions if k=1.
We w111 assume that when € = 0 the periodic motion (1.1) is orbitally stable in the linear approximation,
and the Hamiltonian ¢% of system (1.5) has the form of the Hamiltonian of a harmonic oscillator of

frequency w

o = (€l +n3) (5.2)

In this section, we will consider the case of parametric resonance, when the quantity 2w is close to
an integer n, and we will pay particular attention to the case of odd n.

5.1. Normalization of Hamiltonian function (1.2) when € = 0. It is more convenient to carry out the
investigation assuming that the Hamnlton function (1.2) when € = 0 is normalized to fourth-power terms
inclusive with respect to |n; "%, gz, My Using the Depri-Hori method we can obtain the normahzmg
replacement of variables &;, v; = £, m; as a canonical univalent transformatlon In the vanables £,
the Hamiltonian (1.2) when€ = 0 does not contain thlrd-power terms in |n;] ', £3, 3, while the set
of fourth-power terms depends on 7} and on the combination £, + n22 Without dwelling on the details,
we will merely note that in the normahzatlon the variable m; remains unchanged (m1 = my) while the
variables &, and &,, n, differ from £ and &3, m;, by terms the power of which is no less than the second
and third respectively.

In the variables &}, n; Hamiltonian (1.2) can be written in the form of the following series

M=+ 4+ +...+, +... (5:3)

* . . - * »
where I, is a form of power m in |n; |, &, m;, where

had *| » * * -4
D=0 +95 ¢ =—0)(E.»z +1y )'*‘kZ' e Ty (&3, m3.E) (54)
= 5 e g 8 )
_ 2 ' *2 2 had kp*(k) e * *
Ty = e +Ecn(§2 +nm; +— COZ(E.Q +17) +Z.| Ty (M, 83.m2.8)) (5.6)

The coefficients of the forms F 8 in (5 4)—(5 6) are 21r-per10d1c in £;. Then, for the second-order forms
T, >® the equalities ' ® = cpg (gz, M2, €1) hold, where ? (k =1, 2,...) are coefficients of €* in the first
of series (5.1). The expressions for the forms I';®) are much longer and will not be written here,
since they will not be needed later. The constant coefﬁc1ents c;j from (5.6) are expressed in terms of
the coefficients of expansions (1.2) by the formulae
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0 -1 2
€20 =X () /(0 (\V(O) (0)2)

o= ‘l’(z?)) + ‘I’f)g) - [W(O)(3‘P(3(())) + (ng))'*' Wou)(3‘P:>°3) + (le))]

cor = B30 + 05 +305)) - Y07 (S0 + 9iF?) +

(012  ,(0)2 (0) (0) , (0) (0
+05)° + 0127 +2(95912’ + 95 'e5)]

(5.7)

5.2. Further transformation of the Hamiltonian. Suppose the quantity 2w is close to an odd integer
number 27 + 1. We will put

2n+1-20=20 (5.8)

where a is a quantity of the order of unity.

Remark. The results of this section can also be used in the case when 2w is close to an even number. This will
be the case, for example, if there are no third-order terms I'; or they can be eliminated using a normalizing
transformation.

. We will consider an auxiliary linear Hamilton system of differential equations with Hamilton function
@, from (5.4) and 1ndependent variable ;. Using a linear real canonical univalent replacement of
variables §2, M2 — €;, 7y, analytic in €, close to identical, 2w-periodic in §1, this system can be converted
to a system whose Hamilton function &, (€,, fi;, £1) has the following form

2 = JMES +113) + Yy sin(2n + 1)E] - x; cos(2n+ DE] IEZ - 72) + (5.9)
+, cos(2n + DE} +x, sin(2n + 1DE] 7,
The quantities A, %, %, can be represented in the form of converging series
A=Yn+D)-e(@-A"+eAP 4., x =" 42D +..., i=12 (5.10)

where A\®, x,(k) are constants. In particular [5], we have

| 2
AN = P g((P(zg 3 (.11)

xl = j [9}} cos(2n+ 1)E, - (@43 — @30)sin(2n + 1)E, 1€, (5.12)

%) = j [o{V sin(2n + DE, + (98 - ¢$D)cos(2n + D, 1dE,

where (p(,,ld are the coefficients of cp(l) (£1) of quadratic form ¢% from 5.D.
If the replacement &5, ny — &5, iy, which reduces the Hamiltonian ¢, >(£2, 2, £1) to the form (5.9),
is supplemented by the replacement £1, m > £, 7 1, given by the formulae

g =E, m =1, +‘T’2(&2vﬁ2»él)"P;@;,ﬂ;’él)

where the arguments £, m; of the function ¢ are expressed in terms of &, 11 in accordance with the
replacement &, n; — £, N, we obtain a close to identical canonical univalent transformation
&, m; - &, 7, of all four phase variables. This transformation reduces Hamilton function (5. 3) to the
following form

I“:ﬁl+¢2(&29ﬁ29&|)+f‘3+f‘4+...+f‘ +... (5'13)
where ¢, is the functlon (5 9), and T, is a form of power m in |n,|"?, &,, #, with coefficients that are

2m-periodic in &;, and " L2 4 have a structure specified by Egs (5. 5) and gS .6). Only in these equations
instead of the forms I'; 3 k) there will be certain other forms o1
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3.3. The stability of periodic motion (1.1) at the boundary of the parametric resonance region. We will
introduce the following notation

% = (%} +x§)yz, B=g@-A")-eAP_ ., ay =cqy —ep(n+ B +cop(n+ 15)? (5.14)

Theorem 3. In the region [B| < » periodic motion (1.1) is orbitally stable. At the boundary
|B] = x of this region, for sufficiently small €, the periodic motion is orbitally stable if Bag, < 0, and
unstable if Bag, > 0.

. For the proof we first note that since  is a semi-integer or close to semi-integer number, the quantities
o and 3w are not close to integers. Hence the canonical, close to identical (identical when & = 0) 2=-
periodic with respect to &, replacement of variables £, 7i; — £}, 0, obtained, for example, using the Depri-
Hori method, in Hamiltonian function (5.13) may completely annul the third-order terms ['5. The
converted Hamiltonian I will have the form

T’ =0 + % @2n+1-2B)E;? + M)+ Y xcos20(nyE —E57) + nsin20E5m; +
+oaomi? + Shen 3 +MImi + Yo B’ +17) + B TG LD+ (515)
20=(2n+1)E; +0,

The angle 6. is defined by the equations %, = x sin 6+, x, = % cos 0, and I';® are forms of the
fourth power in |nj| 2, &, n; with coefficients that are 2w-periodic in &;.
We then make the canonical univalent replacement of variables &;, n; — &, 1y} specified by the equations

& =& nf =N~ h(2n+DET’ +n3%) (5.16)

5 =cos0 &7 +sinBn7, N3 =-sin6EF +cosO Ny

In the &, m; variables the quadratic part of the new Hamiltonian does not contain the variable &;,
while the Hamiltonian itself will be

t

T =)+ B0~ Pmy2 — (e + BT 1+ ayn)? + Y0y, (€52 + 5 mp +

+Yians” +n37)% + kZ‘.l e Ty (M &5.n3.E0+ 05 (5.17)

g = €0, Gy =€y —(2n+1cy

The quantity ag, is defined in (5.14), I® are forms of the fourth power in |n3] 2, &, n3 with coefficients
that are 4w-periodic in &}, and Ojs are higher-power terms.

The Hamiltonian specified by the first three terms in expansion (5.17) corresponds to the linearized
equations of the perturbed motion. When the inequality |B| < » is satisfied the characteristic equation
has a positive root. Hence, by Lyapunov’s theorem on stability in the first approximation [6}, the periodic
motion (1.1) is orbitally unstable in the region |B| < .

We will now consider the limits of the instability region when B = % > Qor § = —x < 0. We will
make the canonical univalent transformation &}, n; — u;, v;, specified by the equations

E =, M =v, &5 =@ Huy, =0/t if B=x (5.18)
E=u, W'=v,, §§=(2%)%“2’ T\;=(2K)—yzvzv if B=-x

This replacement reduces Hamiltonian (5.17) to the form (1.13). Here F3 = 0 while F, and F, are
obtained from the terms of the second and fourth powers in (5.17) by replacing the quantities &, m;
using formulae (5.18). Then, by using formulae (1.16) and (1.17) one can calculate the coefficients of
the normalized Hamiltonian (1.15). We obtain

8 = —Sign ﬁ, h30 = hl() = O, h4o = Mzaoz + 0(83) (5.19)
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Since the quantity  is of the order of &, the sign of the coefficient &4 for sufficiently small € is identical
with the sign of ag,. For small € the quantities 8k, and Bag, have opposite signs. Hence, by Theorems
1 and 2 we obtain that at the boundary of the parametric resonance region the unperturbed motion
(1.1) is orbitally stable if Bag, < 0, and unstable if Bag > 0.

Theorem 3 is proved.

6. THE STABILITY OF PENDULUM-TYPE ROTATIONS OF A RIGID
BODY ABOUT A FIXED POINT

Consider the motion of a rigid body of weight mg about a fixed point O. Suppose Oxyz is a system of
coordinates rigidly connected to the body, the axes of which are directed along the principal axes of
inertia of the body for the pint O, and A, B and C are the corresponding moments of inertia. We will
assume that the centre of gravity G lies in the Oyz plane at a distance / from the point O, and the angle
between the section OG and the Oz axis is equal to o.

We will assume that the constant projection of the kinetic moment of the body onto the vertical is
equal to zero. The equations of motion then allow of a partial solution, corresponding to the rotations
of the body, for which the Oyz plane is in a fixed vertical plane, while the body rotates about the horizontal
axis Ox like a physical pendulum. Suppose the mean angular velocity €) of this rotation is sufficiently
large so that the dimensionless quantity € = mgl/(4Q?) can be taken as a small parameter.

The problem of the orbital stability of the above-mentioned plane rotations for small € was investigated
in [11]. In Fig. 3, in the plane of the parameters b = B/A4 and ¢ = C/A in the physically permitted region
1+b=c¢,b+c=1,c+1=b), we distinguish region 1, where the moment of inertia4 with respect
to the axis of rotation Ox has the mean value, and regions 2 and 3, where A is the greatest and least of
the moments of inertia respectively. In region 1, for sufficiently small €, plane rotation is unstable, while
in regions 2 and 3, for small g, there is orbital stability, apart from parametric resonance regions where
the rotation of the body is unstable. In three-dimensional space of the parameters a, b, and € the regions
of instability are confined to surfaces which, when € = 0, issue from the curve in the b, ¢ plane specified
by the equation

3bc—-db+c)+4=0 (6.1)

Parts of the branches of this curve, passing through regions 2 and 3, are shown in Fig. 3.

On the basis of the results of Section 5 of this paper and results from [11], we will consider the stability
of the plane rotations of the body on the above-mentioned surfaces, which bound the parametric
resonance regions for small €.

The quantity w from (5.2) is calculated from the formula

o=[b"c™(1-b)1- )}

Fig. 3
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On resonance curve (6.1) ® = 1/2 and, consequently, we have n = 0 in Eq. (5.8). In the region of curve
(6.1) the quantity o from (5.8) is positive in region 2 (Fig. 3) to the right of and above curve (6.1) and
in region 3 to the left and below it. On the other hand, the quantity « is negative in region 2 to the left
of and below this curve and in region 3 to the right of and above.

The coefficients c;; (see (5.6) and (5.7)) are obtained as follows:

C0 =512, ¢ =50, cgy =—slb~'(1-b)+c'(1-¢))/4

where s = 1 in region 2 and s = -1 in region 3
The quantity A from (5.11) turned out to be zero, while for the quantities (5.12) we can obtain
the following expressions

%" = «(4b)'[2b - sr(2 - b)]sino, %Y =s(4rc) (3¢ -2)cosc (6.2)
r=[c(1=b)"b(1 - )%

In the Hamiltonian of the perturbed motion, reduced to the form (5.17), we have

%= e\/u‘.'" +x? +0(e?), B=eo+O(e?), agp =-s{1+2[b7'(1-b)+c'(1-0)1}/8  (6.3)

It is easy to show that, near the resonance curve (6.1), the quantity aq, is negative both in region 2
and in region 3.
In the first approximation in &, the parametric resonance region is given by the inequality

fo - K< eqfx"? + 22 (64)

Bearing in mind the results of the analysis of the signs of the quantities a and ag presented
above, we obtain, on the basis of Theorem 3, that for small € in the space b, c, € on surfaces which
bound the parametric resonance regions, the plane rotation of the body investigated is orbitally stable
for values of b and ¢ lying in region 2 to the right and above curve (6.1), and in region 3 to the left and
below it, and unstable in region 2 to the left and below this curve and in region 3 to the right and above
it.

The Kovalevskaya case. As an example we will consider the special case of a body, the geometry of
the mass of which is close to the geometry of the mass of the body in the Kovalevskaya case, when B
= C = 24. In the Kovalevskaya case b = ¢ = 2, and it is noteworthy that in this case exact resonance
o = 1/2 occurs. This resonance denotes that the angular velocity of plane rotation of the body is exactly
twice the frequency of small spatial oscillations of the body in the neighbourhood of this rotation.

The point b = ¢ = 2 belongs to the part of curve (6.1) lying in region 3 (Fig. 3). Taking relations (6.2)
and (6.3) into account we obtain that at this point

s=-1 r=1, x=€/2+0(€?), ap =-% (6.5)

Suppose b = 2 + Ab, ¢ = 2 +Ac, where Ab and Ac are small quantities. Then, up to first powers of
Ab and Ac we have

o= Y%+ 1%(Ab+ Ac)

Hence, we obtain from (6.3)-(6.5) that in the first approximation in € the parametric resonance region
is specified by the inequality

|Ab + Ac] < 4€ (6.6)

On the boundary of region (6.6) the rotation of the body is orbitally stable for sufficiently small € if
the corresponding Ab and Ac are such that Ab + Ac < 0, and unstable if Ab + Ac > 0.

For example, if Ab = 0 and Ac = 0, then, in the first approximation in €, the parametric resonance
regions are specified respectively by the inequalities

24dg<c<2+4eand2-4e<b<2+4¢
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At the boundaries ¢ = 2 — 4e and b = 2 — 4¢ of these regions the rotation of the rigid body is orbitally
stable, and on the boundaries ¢ = 2 + 4e and b = 2 + 4¢ it is unstable.

This research was supported financially by the Russian Foundation for Basic Research (99-01-00405).
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